YES 1.306 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule Main
  ((elem :: Eq a => a  ->  [a ->  Bool) :: Eq a => a  ->  [a ->  Bool)

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((elem :: Eq a => a  ->  [a ->  Bool) :: Eq a => a  ->  [a ->  Bool)

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule Main
  (elem :: Eq a => a  ->  [a ->  Bool)

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primPlusNat(Succ(xv2400), Succ(xv401000)) → new_primPlusNat(xv2400, xv401000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primMulNat(Succ(xv3100), Succ(xv40100)) → new_primMulNat(xv3100, Succ(xv40100))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_primEqNat(Succ(xv300), Succ(xv4000)) → new_primEqNat(xv300, xv4000)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_esEs(@2(xv30, xv31), @2(xv400, xv401), app(app(ty_@2, cc), cd), ce) → new_esEs(xv30, xv400, cc, cd)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, app(app(app(ty_@3, gg), gh), ha), ge) → new_esEs1(xv31, xv401, gg, gh, ha)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, eh, app(app(ty_Either, fh), ga)) → new_esEs2(xv32, xv402, fh, ga)
new_esEs3(:(xv30, xv31), :(xv400, xv401), app(ty_Maybe, bde)) → new_esEs0(xv30, xv400, bde)
new_esEs3(:(xv30, xv31), :(xv400, xv401), app(ty_[], bec)) → new_esEs3(xv30, xv400, bec)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, app(app(ty_@2, gc), gd), ge) → new_esEs(xv31, xv401, gc, gd)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), app(app(ty_Either, bac), bad), eh, ge) → new_esEs2(xv30, xv400, bac, bad)
new_esEs3(:(xv30, xv31), :(xv400, xv401), app(app(ty_@2, bdc), bdd)) → new_esEs(xv30, xv400, bdc, bdd)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, eh, app(ty_[], gb)) → new_esEs3(xv32, xv402, gb)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, app(ty_Maybe, gf), ge) → new_esEs0(xv31, xv401, gf)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, eh, app(app(app(ty_@3, fd), ff), fg)) → new_esEs1(xv32, xv402, fd, ff, fg)
new_esEs0(Just(xv30), Just(xv400), app(ty_Maybe, dh)) → new_esEs0(xv30, xv400, dh)
new_esEs2(Left(xv30), Left(xv400), app(app(ty_Either, bbe), bbf), bah) → new_esEs2(xv30, xv400, bbe, bbf)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), ba, app(ty_Maybe, bd)) → new_esEs0(xv31, xv401, bd)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, app(app(ty_Either, hb), hc), ge) → new_esEs2(xv31, xv401, hb, hc)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, eh, app(ty_Maybe, fc)) → new_esEs0(xv32, xv402, fc)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, eh, app(app(ty_@2, fa), fb)) → new_esEs(xv32, xv402, fa, fb)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), app(ty_[], bae), eh, ge) → new_esEs3(xv30, xv400, bae)
new_esEs3(:(xv30, xv31), :(xv400, xv401), bdb) → new_esEs3(xv31, xv401, bdb)
new_esEs2(Right(xv30), Right(xv400), bbh, app(app(app(ty_@3, bcd), bce), bcf)) → new_esEs1(xv30, xv400, bcd, bce, bcf)
new_esEs2(Left(xv30), Left(xv400), app(ty_[], bbg), bah) → new_esEs3(xv30, xv400, bbg)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), ba, app(app(app(ty_@3, be), bf), bg)) → new_esEs1(xv31, xv401, be, bf, bg)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), app(app(app(ty_@3, hh), baa), bab), eh, ge) → new_esEs1(xv30, xv400, hh, baa, bab)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), eg, app(ty_[], hd), ge) → new_esEs3(xv31, xv401, hd)
new_esEs0(Just(xv30), Just(xv400), app(app(ty_@2, df), dg)) → new_esEs(xv30, xv400, df, dg)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), app(ty_Maybe, cf), ce) → new_esEs0(xv30, xv400, cf)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), ba, app(ty_[], cb)) → new_esEs3(xv31, xv401, cb)
new_esEs2(Left(xv30), Left(xv400), app(app(app(ty_@3, bbb), bbc), bbd), bah) → new_esEs1(xv30, xv400, bbb, bbc, bbd)
new_esEs0(Just(xv30), Just(xv400), app(ty_[], ef)) → new_esEs3(xv30, xv400, ef)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), ba, app(app(ty_Either, bh), ca)) → new_esEs2(xv31, xv401, bh, ca)
new_esEs2(Right(xv30), Right(xv400), bbh, app(app(ty_@2, bca), bcb)) → new_esEs(xv30, xv400, bca, bcb)
new_esEs2(Right(xv30), Right(xv400), bbh, app(app(ty_Either, bcg), bch)) → new_esEs2(xv30, xv400, bcg, bch)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), ba, app(app(ty_@2, bb), bc)) → new_esEs(xv31, xv401, bb, bc)
new_esEs2(Left(xv30), Left(xv400), app(app(ty_@2, baf), bag), bah) → new_esEs(xv30, xv400, baf, bag)
new_esEs2(Right(xv30), Right(xv400), bbh, app(ty_[], bda)) → new_esEs3(xv30, xv400, bda)
new_esEs3(:(xv30, xv31), :(xv400, xv401), app(app(ty_Either, bea), beb)) → new_esEs2(xv30, xv400, bea, beb)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), app(app(ty_Either, dc), dd), ce) → new_esEs2(xv30, xv400, dc, dd)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), app(ty_Maybe, hg), eh, ge) → new_esEs0(xv30, xv400, hg)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), app(app(app(ty_@3, cg), da), db), ce) → new_esEs1(xv30, xv400, cg, da, db)
new_esEs1(@3(xv30, xv31, xv32), @3(xv400, xv401, xv402), app(app(ty_@2, he), hf), eh, ge) → new_esEs(xv30, xv400, he, hf)
new_esEs2(Left(xv30), Left(xv400), app(ty_Maybe, bba), bah) → new_esEs0(xv30, xv400, bba)
new_esEs2(Right(xv30), Right(xv400), bbh, app(ty_Maybe, bcc)) → new_esEs0(xv30, xv400, bcc)
new_esEs(@2(xv30, xv31), @2(xv400, xv401), app(ty_[], de), ce) → new_esEs3(xv30, xv400, de)
new_esEs0(Just(xv30), Just(xv400), app(app(ty_Either, ed), ee)) → new_esEs2(xv30, xv400, ed, ee)
new_esEs0(Just(xv30), Just(xv400), app(app(app(ty_@3, ea), eb), ec)) → new_esEs1(xv30, xv400, ea, eb, ec)
new_esEs3(:(xv30, xv31), :(xv400, xv401), app(app(app(ty_@3, bdf), bdg), bdh)) → new_esEs1(xv30, xv400, bdf, bdg, bdh)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_foldr(xv3, :(xv40, xv41), ba) → new_foldr(xv3, xv41, ba)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: